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Abstract : Research into time series models of changing variance and covariance, which is often called
volatility model, has exploded in the last ten years. Financial series are characterised by periods of
large volatility followed by periods of relative quietness. This type of clustering led to the idea that
volatility is predictable. The ARCH and GARCH models were quite successful in predicting volatility
compared to more traditional methods. But better predictions are obtained when asymmetries and
nonlinearities in the the response of volatility to news arriving on the market are taken into account.
In this paper we propose a new kind of asymmetric GARCH in which the conditional variance obeys
two different regimes with a smooth transition function. In this model, the conditional variance reacts
differently to negative and positive shocks and its magnitude on shocks have separate effects. As
financial data have very often a high frequency of observation, smooth transition seems a priori better
than an abrupt transition. The change of regime occurs when the residuals cross the threshold zero.
This threshold GARCH models can be generalized using a smooth transition function Fr(n, s;) taking
continuous values between zero and one. We treat the joint point t* and the speed of adjustment 7
to be two unknown parameters.
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1. INTRODUCTION

Research into time series models of changing
variance and covariance, which is often called
volatility model, has exploded in the last ten
years. Financial series are characterised by peri-
ods of large volatility followed by periods of rela-
tive quietness. This type of clustering led to the
idea that volatility is predictable. The ARCH
and GARCH models introduced respectively by
Engle [1982] and Bollerslev [1986] were quite
successful in predicting volatility compared to
more traditional methods. But better predic-
tions are obtained when asymmetries and non-
linearities in the the response of volatility to
news arriving on the market are taken into ac-
count. The “leverage effect” that commonly
represents the asymmetric impact of good news
and bad news on volatility has certainly be the
most widely explored with Nelson [1991] who
proposed his EGARCH model or Glosten et al.
[1993] who proposed so called ’GJR’ model and
also Zakonian [1994] who proposed a threshold
GARCH models. Engle and Ng [1993] provided

a summary of asymmetric GARCH models and
introduced some new formulations. From the
specifications to investigate regime switching
models with GARCH errors, Terdsvirta (1994)
discussed a STAR-GARCH type model from
the classical point of view. Chan and McAleer
[2000] discussed the quasi-maximum likelihood
estimation of these smooth transition autore-
gressive models with GARCH errors and also
Li, Ling, and McAleer [2001] reviewed some re-
cent theoretical results of GARCH errors. Re-
cently, Bayesian treatment of the ARCH model
first given by Geweke [1988,1989]. Bayesian in-
ference on GARCH model was performed by
Kleibergen and van Dijk [1993] and Bauwens
and Lubrano [1998], Bauwens, et al. [1999], and
Lubrano [1998] for asymmetric GARCH models
with smooth transition regimes.

In this paper we explains how the Gibbs sam-
pler can be used to perform Bayesian infer-
ence on GARCH models and proposes a new
kind of asymmetric GARCH in which the condi-
tional variance obeys two different regimes with
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a smooth transition function. In our model, the
conditional variance reacts differently to nega-
tive and positive shocks and its magnitude on
shocks has separate effects. As financial data
have very often a high frequency of observation,
smooth transition seems a priori better than an
abrupt transition.

2. GARCH MODEL WITH STUDENT
ERRORS

We wish to conduct Bayesian inference on re-
gression model with GARCH errors. To ease
exposition, we consider a parsimonious model
which is quite representative of GARCH mod-
els used in finance fields. It is a GARCH(1,1)
model with Student-t errors (¢ GARCH). As re-
ported in Bollerslev et al. [1992], the ¢ density,
with its fat tails, is more able than the normal
to account for excess kurtosis present in the fi-
nancial data. The model is

w=evh, t=12,...,T
etlIt—l ~ t(0,1,u) 1)

hi = w4+ ay? , + Bhi_y

The ¢, is assumed independent. The distribu-
tion of y;, given the past information I;_,, is ¢
with mean zero, and variance h:v/(v — 2) (as-
suming v > 2). The initial variance hg is treated
as a known constant. To ensure the positivity
of h;, the parameters of the variance equation
are restricted by

w>0,a>0, 8>0. (2)

Other restrictions may be considered: for the v,
process to be covariance stationary, one must
impose that

0< ayyj +/ <1 (assuming v >2). (3)
Let # denote the parameter vector (w, a, 3, V).
For a sample of T' observations, posterior den-

sity is
p(Bly) o p(0)£(8ly) (4)

where the likelihood function is given by

T p(utl . 9 71—
o <] —é(ﬁ(uhn-f 1+ ]
%)

The prior density (8) should respect at least
the positivity restrictions on the parameters,
and the condition 8 < 1, stationarity condi-
tion. One important issue of Bayesian infer-
ence is the integrability of the posterio density.

If a proper (integrable) prior is used, and the
likelihood function is reasonable, the posterior
is proper. However, a non-integrability of the
posterior may arise with an improper prior. If
we consider the behavior of the likelihood func-
tion (5) with respect to the parameter w, o, and
B, we see that reasonableness arises if every h;
is strictly positive, as the ¢ density is finite and
positive under this condition. A sufficient prior
information is needed on v to force the poste-
rior to tend to zero quickly enough at the tail,
in order to be integrable.

3. GRIDDY-GIBBS SAMPLER FOR
" GARCH MODELS

The Gibbs sampler applied to ¢(#|y) produces
a Markov chain {§"}}_; of draws with equlib-
rium distribution ¢(#|y). The draw can be used
to estimate consistently characteristics of the
posterior(moments or marginal densities). The
procedure is started using any value 67 in the
support of the posterior distribution. The in-
fluence of the starting conditions vanishes af-
ter a certain number of draws (burn in). If
the algorithm converges after burn in, it pro-
duces random draws of the posterior density of
#. The sample is not independent because of
the Markov chain structure.

3.1 Griddy-Gibbs Sampler

This algorithm cannot be applied to the
GARCH model even if the error term is normal.
Consider the simple following ARCH model:

yp=p+evh t=12,...,T
€|le—1 ~ N(0,1) (6)
ht =1 + a(yt_l - /1,)2

There are two parameters, p for the regression
function, and a for the skedastic function. Let
us assume a flat prior. The conditional posterior
density ¢(u|a,y) has a following kernel when o
is given fixed value.

2 ht (aa I")
(7

If h, were fixed, (7) would be a normal density.
As h; is the function of both « and g, the condi-
tional posterior density of g contains h; which
is also a function of u. Consequently, it can-
not be a normal or any other well known den-
sity from which random number could be easily
generated. There is no property of conjugacy.
As numerical integration has to be performed
on a, the difficulty comes from the fact that

”(Hla, y) = H[ht(a, ﬂ)]_1/2 exp _l M
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the posterior density of & does not belong to a
known class of densities. To simulate random
draws, several possibilities are open: griddy-
Gibbs sampler, Metropolis-Hastings algorithm,
and Importance sampling. For the last two
methods, an importance function has to be de-
fined for multiplicative heteroscedasticity. We
select the first one for this research.

The kernel of ¢(pu|a,y), conditionally on the
previous draw of the conditioning parameter,
can be evaluated over a grid of points. One can
compute the corresponding distribution func-
tion using a deterministic integration rule. Af-
terwards, one can generate a draw of y by in-

version of the distribution at a random value

sampled uniformly in [0,1]. This technique,
called the Griddy-Gibbs sampler, was applied
by Ritter-Tanner [1992] to bivariate posterior
densities, but the method is really useful if it
can deal with higher dimensional posterior den-
sities.

It is easy to incorporate conditioning, (a
variance reduction technique), in the algo-
rithm. Conditionirll\g means that to estimate
E(aly), one uses ). _; E(a|u™,y)/N instead of
22’21 a™/N. Conditioning is very useful in or-
der to get accurate graphs of the marginal den-
sities for a relatively small number of draws, as
one computes p(aly) = [ (el y)e(uly)dp,
(where a., denotes one point of the grid of values
of a) by

N

elauly) » Y plalv™y)/N  (8)

n=1

In our several experiments, it appears that
Griddy-Gibbs algorithm is successful in dealing
with the skewness of the posterior. This is due
to the fact that integration is done on a grid so
that every direction can be explored in detail.
The main cost of the method is the evaluation
of the posterior density kernel.

4. AN ASYMMETRIC GARCH
MODEL FOR EXCHANGE RATE
DATA

To model an observed series, the simple
GARCH model (1) cannot capture some well
known stylized facts. First, the model implies
that the series has a constant zero mean. Sec-
ond, the model implies that a shock influences
the next conditional variance only by its squared
magnitude, not by its sign: the news impact
curve, i.e. the graph of h; on the past shock,
Yt—1, is symmetrical. This is at odds with
the so-called 'leverage effect’, which referes to
the negative correlation betweeen changes in

prices and volatility. Several specifications has
been proposed to introduce asymmetry, such as
the exponential GARCH (EGARCH) model by
Nelson [1991], the 'GJR’ Model of Glosten et
al.[1993], and threshold ARCH model of Zako-
nian [1994]. There is no need to put positiv-
ity constraint on parameters. GJR type model
was used by Engle and Lee [1992], who allow
asymmetry to enter the transitory component
of volatility, but not the permanent part.

The estimated model allows for a non-
zero first-order autocorrelation of the series,
and a following GJR-type asymmetric Student-
GARCH model.

Ye=p+ pYr—1 +ue

U = Ct\/h_t

€/Ii—1 ~t(0,1,v) (9)
hy =w+atul, + o ul7, + Bhiy

'll,?+ = U%I(u¢>0)7 U?_ = U%I(utso)

Using daily data on the exchange rate of
Japanese Yen against U.S. dollar for the period
03/04/95-31/03/99, we estimate above model.
The data consists of 1010 observations. The de-
pendent variable is the return, measured as the
first difference of the logarithm of the exchange
rate at time ¢.

Table 1: ML and posterior results on asymmetric
GARCH model for exchange rate

Error dens. Student ¢ Student ¢ normal
Prior(v) none(ML) flat none
M 0.0864 0.0868 0.0569
(.01, .20) [0.0222] [0.0224] [0.0280]
P -0.0295 -0.0300 0.0456
(-.2, .15) [0.0298] [0.0305] [0.0289]
w 0.0019 0.0027 0.0931
(.0001, .0055) [0.0016] [0.0014] [0.0518]
at 0.0216 0.0257 0.0885
(.01, .04) [0.0087] [0.0073] [0.0325]
a~ 0.0179 0.0220 0.1874
(.01, .35) [0.0061] [0.0066] [0.0828]
8 0.9594 0.9506 0.7713
(.90, .99) [0.0116] [0.0098] [0.0903]
v 3.9281 4.1110 00
(2.0, M) [0.5245] [0.4243}

Entries in the first column of result (ML) are max-
imum likelihood estimates and asymptotic standard
errors. In the last two columns, they are posterior
means and standard deviation (between brackets, un-
der the means). Posterior moments were computed
by conditioning (i.e. marginalizing conditional mo-
ments). Under the parameter names are the prior in-
tervals (integration ranges). The value of M is 50 for
the flat prior.

All the results were computed with the Griddy-
Gibbs sampler using 2000 draws after burn in.
Three kinds of priors on finite intervals were
used. But, the results do not differ a lot. Pos-
itive shocks have a stronger impact than nega-
tive shocks in Student model. When a symmet-
ric model is estimated, the posterior mean of &

1339



is approximately equal to average of the poste-
rior means of at and o~ in the corresponding
asymmetric model. The difference has a poste-
rior mean equal to 0.0037 with a standard devi-
ation equal to 0.0089 (not shown in the table).
When a normal density is used (v = 00), the es-
timates of a*,a™ and f are slightly higher. This
adjustment accomodates for the excess kurtosis
in the data, since in Student case the degrees of
freedom take up this effect.

5. GENERAL CLASS OF SMOOTH
TRANSITION GARCH MODEL

The simple GARCH(1,1) is certainly the most
widely used model for predicting the volatility
of financial series. The regression model with
GARCH(1,1) errors can be written as follows:

w=zi6+u t=12,...,T
Ug = Et\/h_t € ~ t(07 1,1/) (10)
hy =w+ auf_l + Bhy_y

Most of the time, z; contains a constant and
lagged values of y;. In (10), the conditional ex-
pectation of y; is z{d and the unpredicted part
of y, is y; — z}8. This represents the “news” ar-
riving on the market. In GARCH model, news
have a symmetric impact on volatility, whatever
their sign or magnitude and whatever the level
of y;. This model is used as a starting point to
introduce asymmetry and level effect on volatil-
ity.

A typology of threshold regression models is
provided by the nature of the switching func-
tion Fp(-), which can be step or smooth. A
step transition function is built aound a Dirac
function which is zero when a linear combina-
tion of z; is negative and one otherwise. A
smooth transition function replaces the Dirac
function by a cumulative distribution which is
mostly the logistic function, as advocated by
Terdsvirta (1994). These function, taking val-
ues in [0,1], have the particularity that their
value changes not only according to the sign of
the linear combination of z;, but also according
to its value.

5.1 Gradual Switching Model

"The model of Glosten et al. [1993] represented
as follows:

ht =w + oqul_y (1 — Si—1)

+ aguf_lSt_l + Bhi—1 (11)

S; is an indicator function that is zero when u;
is negative and one otherwise. This formulation

introduces asymmetry of reaction for the condi-
tional variance. The change of regime occures
when u; crosses the threshold zero. This thresh-
old GARCH models can be generalized using a
smooth transition function Fr(n, s;) taking con-
tinuous values between zero and one. We treat
the joint point ¢* and the speed of adjustment 75
to be two unknown parameters. Using the tran-
sition function that was introduced in Tsurumi
[1980] and applied in Tsurumi et al. [1986], the
two regime volatility function in (11) becomes:

h=w+ aluf_l[l — Fr(n, st)]
+ ooyl Fr(n,s)+Bhy  (12)
w4 arul ;| + M2 Fr(n,s) + Bhi_1

where A = (@2 — ay). The transition function
Fr..,, satisfies

S}iinooSTrn(st/Tl) =1
STrn(O) =0 (13)

,lll_rH)ST"" (st /77) =1

and s, is given by

0 t<
st—{t_t* t>t* (14)

We use the hyperbolic tangent as the transition
function since it is easy to use and since pos-
terior inference on join point ¢* and the speed
of adjustment 7 seems to be insensitive to the
choice of transition function.

5.2 Smooth Transition Between Nega-
tive and Positive Shocks

Among the many possible smooth transition
functions, the logistic function was proved to be
very convenient in classical nonlinear modelling.
For gradual switching GARCH model where the
objective is to allow for a possible difference of
reaction between negative and positive shocks,
this function is, for example like this
1

F(y,ut-1) = 1+ exp(—7ur_1) (15)

The function F(-) tends to zero when v = —oo
and to one for u — +00. So a; will characterise
negative shocks and o, positive ones.

5.3 Smooth Transition Between Small
and Big Shocks

Another transition function like the exponential
function

F(y,us—1) =1—exp(—yui_,)  (16)
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was made popular for modelling size asymmet-
rics in models presenting a non-linearity in the
mean. Here F(+o0) = 1 and F(0) = 0. So a;
will characterise small shocks and a big shocks.
For v — o0, F(-) becomes an indicator function
for the point v = 0, which makes our model
equivalent to symmetric GARCH.

An improvement over this function that says
that F' goes to zero if u belongs to the interval
[—e¢, c] and goes to one otherwise is give by

1- eXP(_'Y“f—l)
1+ exp[—y(ui_; — ¢?)]

Fy,ug-1) = (17)

Introduing an extra parameter, the threshold

¢, that determines at which magnitude of past’

errors the change of regime occurs.

6. EMPIRICAL RESULTS

In order to apply smooth transition GARCH
model, we use two kinds of daily data on ex-
change rate for Thailand Baht and Indone-
sian Rupia both against Japanese Yen. These
data are shown for the period 1/3/95-12/31/99
(Baht) (Figure 1), 11/16/95-12/31/99 (Rupia)
(Figure 2).

First, using these data we estimate GJR-type
asymmetric Student GARCH model (9) by each
of two regimes and compare their impact for
shocks. The results are shown in Table 2 for
Baht and Table 3 for Rupia.

e We can see that after Asian money crisis,
volatility of Baht change abruptly between
two regimes, but volatility of Rupia change
gradualy.

e From the degrees of freedom parameter (v)
we find Student model is appropriate ex-
cept 2nd regime for Baht.

e Positive shocks have more strong impact
than negative shocks in the second regime.
The difference gets bigger after the second
regime.

e The 2nd regime estimates of positive shocks
ot are higher than 1st regime and both
shocks are the same for Baht and positive
shocks are higher than negatives in Rupia.

Second, we estimate the following GJR. type
threshold normal smooth transition GARCH
model.

Ye=p+ U
Uy = Et\/h_t €t/It—1 ~ N(O, 1)
hs =w+au?_, + Mu?_, * tanh(S;/n * )
+Bhs 1
0 t<t
S*_{ t—t* t>t*

(18)

. Thai Haht (log diff)
i H

Figure 1: Thailand Baht (log-diff.)

. Indonesian Rupla (log diff.)
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Figure 2: Indonesian Rupia (log-diff.)

The results are shown in Table 4 for Baht and
Rupia.

e Both results do not differ a lot, especially
for adjustment speed, but joint point is dif-
ferent.

e We can show the marginal disibution for
each parameters. From which we can see
the figure of distribution. Figure 3 and 4
are posterior distribution of #* and A for
Baht. Figure 5 and 6 are posterior distri-
bution of £* and A for Rupia.

Table 2: Estimation Results for Asymmetric GARCH
Model (Baht)

1st Regime 2nd Regime
Baht Std. Err Baht Std. Err
0.05682 0.02170 0.04530 0.03088
-0.1798 0.04062 0.11360 0.04144
0.03647 0.01565 0.01707 0.00667
0.09504 0.03696 0.15940 0.04050
0.09740 0.03974 0.04636 0.02540
0.70310 0.08148 0.85130 0.03215

3.32800 0.5998 9.642 4.101

ctwR®Rexx

Table 3: Estimation Results for Asymmetric GARCH
Model (Rupia)

1st Regime 2nd Regime
Rupia Std. Err Rupia Std. Err
-0.05945  0.02966 | 0.01973  0.02209
-0.1351 0.05036 | 0.00475  0.04546
0.1194 0.04237 | 0.05970  0.01843
0.09362  0.04563 | 0.28050  0.08077
0.06029  0.03947 0.1219 0.06020
0.67650  0.09161 | 0.44120 0.1143
5.04600 1.5288 3.088 0.4769

rwR®Resx
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Table 4: Smooth Transition GARCH Model (Baht,

Rupiah)

Baht Std. Err | Rupiah Std Err

-0.01278 - 0.01746 -0.01120 0.01094
t* | 505.1 38.09 323.1 17.20
w | 0.02424 0.00807 0.00610 0.00096
a | 0.08889  0.02866 0.07276  0.05267
B | 0.8274 0.03752 0.8245 0.02039
A | 0.08481 0.01865 0.1707 0.04498
n 21.98 10.06 21.81 8.879
T | 1253 1009

Figure 4: Posterior
Density of A (Baht)

Figure 3: Posterior
Density of ¢* (Baht)

4

Figure 6: Posterior
Density of A (Rupia)

Figure 5: Posterior
Density of t* (Rupia)
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